মানুষের বুদ্ধিমত্তা ও চিন্তাশক্তিকে কৃত্রিম উপায়ে প্রযুক্তিনির্ভর করে যন্ত্রের মাধ্যমে বাস্তবায়ন করাই হচ্ছে কৃত্রিম বুদ্ধিমত্তা। এটি কম্পিউটার বিজ্ঞানের একটি শাখা, যেখানে মানুষের বুদ্ধিমত্তা ও চিন্তাশক্তিকে কম্পিউটার দ্বারা অনুকৃত করার চেষ্টা করা হয়ে থাকে। কৃত্রিম বুদ্ধিমত্তা বা আর্টিফিশিয়াল ইন্টেলিজেন্স (এআই) এখন হয়ে উঠেছে একটি অ্যাকাডেমিক শিক্ষার ক্ষেত্র, যেখানে পড়ানো হয় কীভাবে কম্পিউটার এবং সফটওয়্যার তৈরি করতে হয়, যা বুদ্ধিমত্তা প্রদর্শন করবে। কম্পিউটারকে মিমিকস কগনেটিক এককে আনা হয়, যাতে করে কম্পিউটার মানুষের মতো ভাবতে পারে। যেমন- শিক্ষা গ্রহণ এবং সমস্যার সমাধান। কৃত্রিম বুদ্ধিমত্তা হলো মেশিন দ্বারা প্রদর্শিত বুদ্ধি।
কম্পিউটার বিজ্ঞানের ক্ষেত্রে কৃত্রিম বুদ্ধিমত্তার গবেষণার ক্ষেত্রটি ‘বুদ্ধিমান এজেন্ট’-এর অধ্যয়ন হিসেবে নিজেকে সংজ্ঞায়িত করে ‘যেকোনো যন্ত্র, যা তার পরিবেশকে অনুধাবন করতে পারে এবং এমন কিছু পদক্ষেপ নেয়, যা কিছু লক্ষ্য অর্জনে তার সাফল্যকে অনেক দূর পর্যন্ত এগিয়ে নেয়।’ ‘কৃত্রিম বুদ্ধিমত্তা’ শব্দটি প্রয়োগ করা হয় তখন, যখন একটি মেশিন তার জ্ঞানের ফাংশনগুলো কার্যকর করে, যেখানে অন্যান্য মানুষের মনের সঙ্গে সমান্তরালে চলাচল করে। যেমন- ‘শিক্ষা গ্রহণ’ এবং ‘সমস্যা সমাধান’। আন্দ্রেয়ার কাপলান এবং মাইকেল হেনলিন কৃত্রিম বুদ্ধিমত্তার সংজ্ঞায় বলেন ‘এটি একটি সিস্টেমের বহির্ভূত তথ্য সঠিকভাবে ব্যাখ্যা করতে পারার ক্ষমতা, এমন তথ্য থেকে শিক্ষাগ্রহণ এবং ওই শিক্ষা ব্যবহার করে অভিযোজনের মাধ্যমে বিশেষ লক্ষ্য ঠিক করা।’
মেশিন যখন ক্রমবর্ধমানভাবে সক্ষম হয়ে ওঠে, তখন মানসিক সুবিধার জন্য বুদ্ধিমত্তাকে সংজ্ঞা থেকে সরিয়ে ফেলার প্রয়োজন হয়। বর্তমানে যে সক্ষমতাগুলোকে শ্রেণিবদ্ধ করা হয়েছে সেগুলো মানুষের বক্তব্যকে সফলভাবে বুঝতে পারে, কৌশলগত গেম সিস্টেম, যেমন- দাবা বা উচ্চতর স্তরের প্রতিযোগিতায় অংশগ্রহণ করতে পারে, স্বয়ংক্রিয়ভাবে গাড়ি চালাতে পারে, সামরিক সিমুলেশন এবং জটিল উপাত্ত ব্যাখ্যা করতে পারে। তাই এআই গবেষণাকে কতগুলো উপ-শাখায় বিভক্ত করা যেতে পারে, যা নির্দিষ্ট সমস্যা, দৃষ্টিভঙ্গি, বিশেষ সরঞ্জামের ব্যবহার বা নির্দিষ্ট অ্যাপ্লিকেশনগুলোর দিকে ফোকাস করে।
চিন্তা করতে সক্ষম কৃত্রিম মানুষ মূলত গল্প বলার যন্ত্র হিসেবে আবির্ভূত হয়। তবে প্রকৃতপক্ষে কার্যকর যুক্তি প্রদর্শনের জন্য একটি যন্ত্র তৈরির চেষ্টা করার ধারণাটি সম্ভবত ১৩০০ খ্রিস্টাব্দে শুরু হয়। উদ্ভাবিত ক্যালকুলাস রেটিওসিনেটরের সঙ্গে, গটফ্রিড লিবিনিজ গণিত মেশিনের ধারণাকে সম্প্রসারিত করেন। এরপর উইলহেলম স্কিকার্ড ১৬২৩-এর কাছাকাছি সময়ে প্রথম একটি প্রকৌশলগত কাজ করেন সংখ্যার পরিবর্তে ধারণার ওপর অপারেশন পরিচালনার উদ্দেশ্যে। উনিশ শতক থেকে কৃত্রিম মানুষ বৈজ্ঞানিক কল্পকাহিনিতে সাধারণ বিষয় হয়ে যায়, যেমন মেরি শ্যালির ফ্রাঙ্কেনস্টাইন বা কারেল কেপেকের রাসোসের ইউনিভার্সাল রোবটসের কথা উল্লেখ করা যেতে পারে।
যান্ত্রিক বা আনুষ্ঠানিক যুক্তি অধ্যয়ন প্রাচীনকালে দার্শনিক ও গণিতবিদদের দ্বারা শুরু হয়। গাণিতিক যুক্তিবিজ্ঞান অধ্যয়ন অ্যালান টুরিংয়ের গণিতের তত্ত্বের সূত্রপাত করেন, যেখানে একটি মেশিন, ‘০’ এবং ‘১’ প্রতীক চিহ্ন দ্বারা গাণিতিক সিদ্ধান্ত গ্রহণ করতে পারে। এর মাধ্যমে যে ডিজিটাল কম্পিউটার আনুষ্ঠানিক যুক্তির কোনো প্রক্রিয়া অনুকরণ করতে পারে তা চার্চ-টুরিং থিসিস হিসেবে পরিচিতি লাভ করে। স্নায়ুবিদ্যা, তথ্যতত্ত্ব এবং সাইবারনেটিকসের আবিষ্কার গবেষকদের মধ্যে বৈদ্যুতিক মস্তিষ্ক নির্মাণের সম্ভাবনাকে বাড়িয়ে দেয়। এআই গবেষণার ক্ষেত্র ১৯৫৬ সালে ডার্টমাউথ কলেজের একটি কর্মশালায় প্রথম প্রতিষ্ঠিত হয়। অ্যালেন নিউয়েল, হারবার্ট সিমন, জন ম্যাকার্থি, মার্ভিন মিনস্কি এবং আর্থার স্যামুয়েল এআই গবেষণার প্রতিষ্ঠাতা এবং নেতা হয়ে ওঠেন।
তারা এবং তাদের ছাত্ররা যে প্রোগ্রাম তৈরি করেছিলেন, সংবাদপত্র তাকে বিস্ময়কর হিসেবে বর্ণনা করে যা কম্পিউটার গেমে বিজয়ী হয়, বীজগণিতের সমস্যার সমাধান করে, যুক্তিগত তত্ত্বগুলো প্রমাণ করে এবং ইংরেজি ভাষায় কথা বলতে সক্ষম। ১৯৬০-এর দশকের মাঝামাঝি মার্কিন যুক্তরাষ্ট্রে প্রতিরক্ষা বিভাগ দ্বারা কৃত্রিম বুদ্ধিমত্তা গবেষণার জন্য ব্যাপকভাবে তহবিল প্রদান এবং বিশ্বব্যাপী ল্যাবরেটরি প্রতিষ্ঠিত হয়। এআই প্রতিষ্ঠাতারা এর ভবিষ্যৎ সম্পর্কে আশাবাদী ছিলেন। হারবার্ট সাইমন ভবিষ্যদ্বাণী করেছিলেন, ‘মেশিন ২০ বছরের মধ্যে একজন মানুষ যা করতে পারে তা করতে সক্ষম হবে।’ মার্ভিন মিন্স্কি একমত হয়েছিলেন, ‘একটি প্রজন্মের মধ্যে কৃত্রিম বুদ্ধিমত্তা তৈরির সমস্যাটি সমাধান হয়ে যাবে।’ তবে বিজ্ঞানীরা কিছু কাজের অসুবিধা সমাধানে ব্যর্থ হয়েছিলেন। ফলে এআই গবেষণায় অগ্রগতি ধীরগতি সম্পন্ন হয়ে পড়ে এবং ১৯৭৪ সালে এআইএর গবেষণা বন্ধ হয়ে যায়।
১৯৯০ এবং একবিংশ শতকের প্রথম দিকে সরবরাহ, ডেটা মাইনিং, চিকিৎসা নির্ণয় এবং অন্যান্য কাজের জন্য এআই ব্যবহার করা শুরু হয়। সাফল্য ছিল গণনায় ক্ষমতা বৃদ্ধি, নির্দিষ্ট সমস্যার সমাধান, অন্য ক্ষেত্রগুলোর মধ্যে নতুন সম্পর্ক এবং গবেষকদের গাণিতিক পদ্ধতি এবং বৈজ্ঞানিক মানকে একটি প্রতিশ্রুতির ওপর দাঁড় করানো। ডিপ ব্লু নামক মেশিন ১১ জুন, ১৯৯৭ তারিখে একজন দাবা চ্যাম্পিয়ন গ্যারি কাসপারভকে পরাজিত করার মাধ্যমে প্রথম কম্পিউটার নিয়ন্ত্রিত দাবা খেলোয়াড় হয়ে ওঠে। আলফাগো জিরো সফটওয়্যার তিন দিন ধরে নিজের বিরুদ্ধেই ‘গো’ নামক একটি বোর্ড গেম খেলার পরে দক্ষতার দিক থেকে সুপার-হিউম্যান পর্যায়ে পৌঁছে যায়। এক্সিসটেনশিয়াল রিস্ক সেন্টার বলছে, ‘কৃত্রিম বুদ্ধিমত্তার এই পদ্ধতি যতই শক্তিশালী হয়ে উঠবে, ততই এটি অতি বুদ্ধির অধিকারী হয়ে উঠবে। এটি হয়তো বেশির ভাগ ক্ষেত্রেই মানুষের সক্ষমতাকেও ছাড়িয়ে যাবে।’
কম্পিউটারে দ্রুতই উন্নত পরিসংখ্যান কৌশল, বড় পরিমাণে তথ্যের মধ্যে প্রবেশ এবং শিক্ষা ও উপলব্ধির ক্ষেত্রে অগ্রগতি লাভ করে। ২০১০-এর মাঝামাঝি পর্যন্ত, সারা পৃথিবীতে মেশিন লার্নিং অ্যাপ্লিকেশনগুলো ব্যবহার করা হতো। ২০১৫ সালে কৃত্রিম বুদ্ধিমত্তার জন্য একটি মাইলফলক বছর ছিল। গুগলের মধ্যে এআই ব্যবহার করার জন্য ২৭০০-এরও বেশি প্রকল্পে ‘স্পোরাইডিক ব্যবহার’ বৃদ্ধি পেয়েছে। এ ক্ষেত্রে ত্রুটির হার ২০১১ সাল থেকে উল্লেখযোগ্য কমে এসেছে। ক্লাউড কম্পিউটিং অবকাঠামোর উত্থানের ফলে এবং গবেষণা সরঞ্জাম ও ডেটাসেটগুলোর বৃদ্ধির কারণে সাশ্রয়ী মূল্যের স্নায়বিক নেটওয়ার্কগুলো বৃদ্ধি পেয়েছে। অন্যান্য উদাহরণের মধ্যে অন্তর্ভুক্ত রয়েছে মাইক্রোসফটের স্কাইপে সিস্টেমের ডেভেলপমেন্ট, যা স্বয়ংক্রিয়ভাবে একটি ভাষা থেকে অন্য ভাষায় অনুবাদ করতে পারে এবং ফেসবুক সিস্টেম অন্ধ মানুষদের কাছে চিত্রের বর্ণনা করতে পারে।
কৃত্রিম বুদ্ধিমত্তার সামগ্রিক গবেষণার লক্ষ্য হচ্ছে প্রযুক্তি তৈরি করা, যার মাধ্যমে কম্পিউটার এবং মেশিন বুদ্ধিমান পদ্ধতিতে কাজ করতে সক্ষম হবে। বুদ্ধিমত্তার উৎপাদন বা তৈরির ক্ষেত্রে সাধারণ সমস্যাগুলো কয়েকটি উপ-সমস্যায় বিভক্ত করা হযেছে। যে বিশেষ বৈশিষ্ট্য বা ক্ষমতা রযেছে, তা একটি বুদ্ধিমান সিস্টেম প্রদর্শন করবে বলে গবেষকরা আশা করেন। প্রাথমিক গবেষকরা অ্যালগরিদম বিকশিত করেছেন, যা ধাপে ধাপে যুক্তিযুক্ত করে, যেমন করে মানুষ সমস্যা সমাধান বা যুক্তি খ-নের জন্য সেগুলো ব্যবহার করে। ১৯৮০ ও ১৯৯০-এর দশকের শেষের দিকে এআই গবেষণাকে উন্নত করা হয় মূলত অনিশ্চিত বা অসম্পূর্ণ তথ্য, সম্ভাবনা এবং অর্থনীতি থেকে ধারণা করার জন্য।
এআই ‘সাব-সিম্বোলিক’ সমস্যা সমাধান ব্যবহার করে অগ্রগতি অর্জন করেছে। কৃত্রিম বুদ্ধিমত্তার অঙ্গবিন্যাসকারী এজেন্ট উচ্চতর যুক্তি থেকে দক্ষতার ওপর জোর দেয়, যা মস্তিষ্কের ভেতরকার কাঠামোর অনুকরণে গবেষণার প্রচেষ্টা করে। কারণ এআইয়ের প্রধান উদ্দেশ্য হলো মানুষের ক্ষমতা অনুকরণ করা। জ্ঞানের প্রতিনিধিত্ব এবং জ্ঞানের প্রকৌশল এআই গবেষণার কেন্দ্রীয় বিষয়। অনেক সমস্যার সমাধান যে মেশিন দ্বারা হবে বলে প্রত্যাশা করা হয় তার বিশ্ব সম্পর্কে ব্যাপক জ্ঞান থাকা প্রয়োজন। যে ধরনের বিষয় এআই প্রতিনিধিত্ব করবে তা হলো বস্তু, বৈশিষ্ট্য, বিভাগ এবং বস্তুর মধ্যে সম্পর্ক; পরিস্থিতি, ঘটনা, অবস্থা এবং সময়; কারণ এবং প্রভাব; জ্ঞান সম্পর্কে জ্ঞান; এবং অন্যান্য গবেষণামূলক ডোমেইন। সর্বাধিক উচ্চতর তত্ত্ববিদ্যা তাকেই বলা হয় যা অন্য সব জ্ঞানের ভিত্তি প্রদানের প্রচেষ্টা করে। জ্ঞানের প্রতিনিধিত্বের মধ্যে সবচেয়ে কঠিন সমস্যাগুলো
১. ডিফল্ট যুক্তি এবং যোগ্যতার সমস্যা : উদাহরণস্বরূপ, যদি একটি পাখির কথা আলোচনায় আসে তবে মানুষ সাধারণত একটি প্রাণীকে চিত্রিত করে, যার কোনো বিশেষ আকার, চিহ্ন আছে এবং যারা উড়তে পারে। এসব জিনিস সব পাখি সম্পর্কে সত্য নয়। জন ম্যাকার্থি ১৯৬৯ সালে এ সমস্যাটি চিহ্নিত করেছিলেন যোগ্যতার সমস্যা হিসেবে। এআই গবেষণা এ সমস্যার সমাধানের জন্য চেষ্টা করেছে।
২. কমনসেন্স জ্ঞানের বিস্তৃতি : যার প্রধান লক্ষ্য হচ্ছে কম্পিউটারের মতো উৎস থেকে পড়ার মাধ্যমে প্রয়োজনীয় ধারণাগুলো বোঝার জন্য মেশিনের যথেষ্ট ধারণা থাকতে হবে এবং তার নিজের অ্যান্টোলোজিতে যোগ করতে সক্ষম হতে হবে।
৩. কিছু সাধারণ জ্ঞানের প্রতীকী ফর্ম : মানুষ যা জানে তার বেশির ভাগই ‘ঘটনা’ বা ‘বিবৃতি’ হিসেবে উপস্থাপিত হয় না, যা তারা মৌখিকভাবে প্রকাশ করতে পারে। উদাহরণস্বরূপ, একজন দাবা মাস্টার একটি নির্দিষ্ট দাবা পরিসীমা এড়িয়ে চলবেন বা একজন শিল্প সমালোচক একটি আঁকা ছবি দেখেই এটি জাল মনে করতে পারেন। এগুলো মানব মস্তিষ্কের অসচেতন এবং উপ-প্রতীকীস্বরূপ বা প্রবণতা। এ ধরনের জ্ঞান প্রদান মূলত প্রতীকী এবং সচেতন জ্ঞানের জন্য আশা করা হয় যে কম্পিউটেশনাল বুদ্ধি বা পরিসংখ্যানগত এআই এ ধরনের জ্ঞান প্রতিনিধিত্ব করার উপায়গুলো প্রদান করবে।
৪. শিক্ষা : মেশিনের শিক্ষণ হলো এআই গবেষণার একটি মৌলিক ধারণা, যা প্রতিষ্ঠার পর থেকে কম্পিউটার অ্যালগরিদম অধ্যয়ন, যা অভিজ্ঞতার মাধ্যমে স্বয়ংক্রিয়ভাবে উন্নতি করতে সক্ষম। মেশিন লার্নিং অ্যালগরিদমগুলোর গাণিতিক বিশ্লেষণ এবং তাদের পারফরম্যান্স কম্পিউটেশনাল লার্নিং থিওরি নামে পরিচিত, যা তাত্ত্বিক কম্পিউটার বিজ্ঞানের একটি শাখা।
তবে এ কথা সত্য, জ্ঞানের ভিত্তিটা সব সময়ই মানুষের হাতে থেকেছে এবং মানুষই তাকে পরিচালনা করেছে এবং করবে। একই সঙ্গে এ কথাও মনে রাখতে হবে যে, কৃত্রিম বুদ্ধিমত্তার জন্ম মানুষের মৌলিক বুদ্ধিমত্তারই গর্ভে।
লেখক : সহকারী কর্মকর্তা, ক্যারিয়ার অ্যান্ড প্রফেশনাল ডেভেলপমেন্ট সার্ভিসেস বিভাগ, সাউথইস্ট বিশ্ববিদ্যালয়