মহাবিশ্বের বাকি অন্যান্য অংশের মতো আমাদের সৌরজগতেও বর্তমান অবস্থাটি কিভাবে এসেছে আমরা তা সহজে জানতে পারি না। আমরা যখন আজকের জিনিসগুলি দেখি, তখন আমরা যা দেখি তা হল এখন (আমাদের সাপেক্ষে) বেঁচে থাকা অবস্থা, বাকি বিবরণগুলি সময়ের অতীত ইতিহাসে হারিয়ে গেছে। তবুও মহাবিশ্ব আমাদের তার অতীত সম্পর্কে কিছু সংকেত দেয়। তা থেকে আমরা অনেক যুক্তিসঙ্গত, দৃঢ় সিদ্ধান্ত নিতে পারি। এরকম‌ই একটি প্রশ্ন হলো আমাদের সূর্য কততম প্রজন্মের নক্ষত্র?
জ্যোতির্বিজ্ঞানীরা যখন নক্ষত্রকে শ্রেণীবদ্ধ করেন, তখন তারা সাধারণত তাদেরকে তিনটি বিভাগে ভাগ করেন। সেই ভাগের নাম হলো পপুলেশন I, পপুলেশন II ও পপুলেশন III নক্ষত্র। পপুলেশন I নক্ষত্রগুলি আমাদের সূর্যের মতো নক্ষত্র। এগুলি তাদের বর্ণালীতে শক্তিশালী শোষণ বৈশিষ্ট্য অর্থাৎ strong absorption features দেখায়। যা নির্দেশ করে যে তাদের ভরের প্রায় 1% (কমবেশি) ভারী উপাদান দিয়ে গঠিত, ভারী উপাদান মানে হাইড্রোজেন এবং হিলিয়াম ছাড়া অন্য পারমাণবিক নিউক্লিয়াস।
অন্যদিকে পপুলেশন II নক্ষত্রের বর্ণালীতে অনেক দুর্বল শোষণ বৈশিষ্ট্য (much weaker absorption features) দেখা যায়। এর কারণ হল তাদের ভরের অনেক ছোট অংশ (প্রায় 0.1% বা কম) হাইড্রোজেন বা হিলিয়ামের চেয়ে ভারী উপাদান দিয়ে তৈরি। এরা আগের পপুলেশনের তারার চেয়ে অনেক কম "দূষিত"।
এবার আসে পপুলেশন III এর কথা। এখন‌ও পর্যন্ত এদের সন্ধান পাওয়া যায় নি। আপনি এদের শুধুমাত্র একটি তাত্ত্বিক প্রয়োজনীয়তা বা theoretical necessity হিসাবে দেখতে পারেন। প্রারম্ভিক সময়ে, মহাবিশ্বের 99.999999% ছিল হাইড্রোজেন এবং হিলিয়াম এবং প্রথম যে তারাগুলি তৈরি হয়েছিল তারা অবশ্যই একেবারে আদিম এবং তাদের মধ্যে একদমই কোনো ধাতু (আপনি এদের metal-free বলতে পারেন) ছিল না।
এখানে পৃথিবীতে কার্বন, নাইট্রোজেন, অক্সিজেন, ফসফরাস, সিলিকন, সালফার এবং লোহার মতো উপাদানগুলিকে "মহাজাগতিক দূষণ" হিসাবে ভাবা কিছুটা আশ্চর্যজনক বলে মনে হলেও বিজ্ঞানীরা অন্তত এব্যাপারে সেই দৃষ্টিকোণটির উপর জোর দেন। তাত্ত্বিকভাবে, বিগ ব্যাং অনুসারে এটি এভাবেই হওয়া উচিত।
মহাবিশ্ব তার প্রাথমিক পর্যায়ে উত্তপ্ত, ঘন এবং কণা, প্রতিকণা এবং বিকিরণে ভরা ছিলো। উষ্ণতম সময়ে, বিভিন্ন কোয়ান্টায় পর্যাপ্ত শক্তি থাকে যা স্বতঃস্ফূর্তভাবে ম্যাটার-অ্যান্টিম্যাটার জোড়া কণা তৈরি করে। কিন্তু মহাবিশ্ব প্রসারিত এবং শীতল হওয়ার সাথে সাথে এটি সেই নতুন জোড়া তৈরি করার ক্ষমতা হারায়। পরিবর্তে, অবশিষ্ট জোড়াগুলি সমস্ত ধ্বংস হয়ে যায়, শুধুমাত্র স্থিতিশীল, অবশিষ্ট পদার্থের কণা যেমন প্রোটন, নিউট্রন এবং ইলেকট্রন ইত্যাদি রয়ে যায়।
প্রথম নক্ষত্র তৈরি হওয়ার অনেক আগে এই প্রোটন এবং নিউট্রনগুলি প্রাথমিক মহাবিশ্বের উত্তপ্ত, ঘন পরিবেশে প্রথম উপপারমাণবিক (subatomic) প্রতিক্রিয়ার মধ্য দিয়ে যায়। উত্তপ্ত বিগ ব্যাং শুরু হওয়ার পর প্রথম কয়েক মিনিটের মধ্যে মহাবিশ্ব যথেষ্ট ঠাণ্ডা হয়ে যায় এবং সেই বিক্রিয়াগুলি আর এগোতে পারে না। এই প্রাথমিক পর্যায় থেকে, আমরা পরমাণুর নিউক্লিয়াসের আদিম প্রাচুর্য (primeval abundance) পেতে পারি। যাদের মধ্যে
75% হাইড্রোজেন নিউক্লিয়াস (সাধারণ প্রোটন)
25% হল হিলিয়াম নিউক্লিয়াস (দুটি প্রোটন এবং দুটি নিউট্রন)
প্রায় 0.01% ডিউটেরিয়াম (একটি প্রোটন এবং একটি নিউট্রন)
প্রায় 0.01% হিলিয়াম-3 (দুটি প্রোটন এবং একটি নিউট্রন), এবং
প্রায় 0.0000001% লিথিয়াম -7 (তিনটি প্রোটন এবং চারটি নিউট্রন)
এই অনুপাতটি প্রথম নক্ষত্রের গঠনের শুরুতে পরবর্তী পারমাণবিক প্রতিক্রিয়া না হওয়া পর্যন্ত অব্যাহত থাকবে।
কয়েক মিলিয়ন বছর ধরে এই মৌলিক অনুপাত সমগ্র মহাবিশ্ব জুড়ে স্থির ছিল। কার্বন, নাইট্রোজেন বা অক্সিজেন ছিল না, কোন জৈব অণু নেই, নেই কোন জটিল রসায়ন। এমনকি গ্যাসীয় গ্রহের কাঁচা উপাদান ছাড়া পাথুরে গ্ৰহ বা জীবনেরও কিছুই নেই। আদিম সেই মহাবিশ্ব ছিলো বৈচিত্র্যহীন। বিগ ব্যাং এর মাত্র কয়েক বিলিয়ন বছর পরের সেই গ্যাসীয় পদার্থ সম্পর্কে গত দশকে খোঁজ পাওয়া গেছে। এই আবিষ্কারটি বিজ্ঞানীদের পূর্বাভাস দেওয়া মৌলিক অনুপাতের পাশাপাশি বিগ ব্যাং নিউক্লিওসিন্থেসিসের কাঠামোর তাত্ত্বিক ধারণাকে নিশ্চিত করেছে।
তাই আমরা জানি যে মহাবিশ্বের যেকোনো স্থানে প্রথম প্রজন্মের নক্ষত্র তৈরি হবে এই আদি উপাদানগুলো থেকে, অন্য কিছু ছাড়া কেবল হাইড্রোজেন এবং হিলিয়াম থেকে। কিন্তু সদ্য গঠিত নক্ষত্র সমেত অতি-দূরবর্তী ছায়াপথের আবিষ্কার সত্ত্বেও দেখা যায় যে তাদের কোনটিই প্রকৃতপক্ষে আদিম (truly pristine) নয়।
অন্য কথায়, আমরা এখনও সত্যিকারের পপুলেশন III নক্ষত্র আবিষ্কার করতে পারিনি। সম্প্রতি চালু হওয়া জেমস ওয়েব স্পেস টেলিস্কোপের প্রধান লক্ষ্যগুলির মধ্যে একটি হলো সেই অধরা, প্রারম্ভিক নক্ষত্রগুলিকে প্রকাশ করা। আশা করা যায় বিজ্ঞানীরা হয়তো সেই লক্ষ্যে সফল হবেন।
যখনই নক্ষত্র গঠিত হয়, সেগুলো উদ্ভূত হয় আণবিক গ্যাসীয় মেঘের পতন (collapse) থেকে। কিন্তু একটি মেঘ ভেঙে পড়তে গেলে, এটিকে তার মহাকর্ষীয় শক্তিকে বিশুদ্ধ গতিশক্তি বা তাপে পরিণত করা এড়াতে হবে, নাহলে মেঘটি ছড়িয়ে যাবে। এটি সম্পন্ন করার প্রধান উপায় হল মেঘের কণাগুলিকে বিকিরণের মাধ্যমে ঠান্ডা করা। কিন্তু দেখা যায় শুধুমাত্র হাইড্রোজেন এবং হিলিয়ামের সাথে এই বিকিরণ পদ্ধতি খুব একটা কাজ করে না।বর্তমানে নক্ষত্র-গঠনকারী অঞ্চলগুলি সাধারণত গড়ে আমাদের সূর্যের ভরের প্রায় 40% নক্ষত্র তৈরি করে। অন্য দিকে পপুলেশন III নক্ষত্রের (প্রথম প্রজন্মের নক্ষত্র) গড় হওয়া উচিত আমাদের সূর্যের ভরের প্রায় দশগুণ।
যেখানে আমাদের সূর্যের মতো একটি নক্ষত্র প্রায় দশ বিলিয়ন বছর বেঁচে থাকতে পারে, যে নক্ষত্রগুলি সৌরভরের দশগুণ বা তারও বেশি বৃহদায়তনের, তারা কেবলমাত্র কুড়ি বা ত্রিশ মিলিয়ন বছর বেঁচে থাকে। আসলে একটি নক্ষত্রের জীবনকাল তার ভরের (সঠিকভাবে বললে তার লুমিনোসিটি) সাথে ব্যস্তানুপাতিক (inversely proportional) ভাবে সম্পর্কিত।
যখন এই প্রারম্ভিক, বৃহদাকার নক্ষত্রগুলি মারা যায়, তখন তারা প্রচুর পরিমাণে নাক্ষত্রিক অবশিষ্টাংশ উৎপন্ন করে। তাদের মধ্যে থাকে কার্বন, অক্সিজেন, নিয়ন, সিলিকন, সালফার কোবাল্ট, লোহা, নিকেল ইত্যাদি। অবশেষে, এই নক্ষত্রগুলি একটি বিপর্যয়কর সুপারনোভা বিস্ফোরণে ধ্বংস হয়, যেখানে মূল কেন্দ্র একটি নিউট্রন তারকা বা ব্ল্যাক হোলে পরিণত হয়, আর বাইরের স্তরগুলি প্রবল গতিতে মহাকাশে বের হয়ে যায়।
এই শেষ অংশটি একটি অত্যন্ত গুরুত্বপূর্ণ বিষয়। মৃত নক্ষত্রের প্রথম প্রজন্মের থেকে বহিষ্কৃত ভারী উপাদান আবার আন্তঃনাক্ষত্রিক মাধ্যমের (interstellar medium) সাথে মিশে যায়, যেখানে এটি ভবিষ্যতের প্রজন্মের নক্ষত্র গঠনে অংশগ্রহণ করে।
প্রথম উপাদান-সমৃদ্ধ (বা দূষিত) দ্বিতীয় প্রজন্মের নক্ষত্রগুলিতে সামান্য পরিমাণে কার্বন, অক্সিজেন এবং অন্যান্য ভারী উপাদান থাকতে পারে। এই উপাদানগুলো নক্ষত্র গঠনের সময় পূর্বে উল্লেখিত বিকিরণের মাধ্যমে শীতলতা তৈরীর ক্ষেত্রে উল্লেখযোগ্য ভূমিকা পালন করে। ভবিষ্যৎ নক্ষত্রের ভরের 0.001% হিলিয়ামের চেয়ে ভারী উপাদানে গঠিত হয় (যাকে জ্যোতির্বিজ্ঞানীরা অযৌক্তিকভাবে "ধাতু" বলে থাকেন)। এই পপুলেশন II নক্ষত্রগুলি অপেক্ষাকৃত কম ভরের হয়, যার অর্থ তাদের কিছু আজও থাকা উচিত।
এবং এটি একটি বড় ঘটনা, কারণ আমরা আমাদের নিজস্ব মিল্কিওয়েতেও এ ধরনের তারা খুঁজে পাই! এই ধরনের বেশিরভাগ নক্ষত্র‌ই গ্যালাক্সির বাইরের "হ্যালো" অঞ্চলে পাওয়া যায়, কারণ সেখানেই নক্ষত্রের সবচেয়ে কম সংখ্যা (এবং সবচেয়ে কম প্রজন্ম) তৈরি হয়। আমরা এগুলিকে অতি পুরোন গ্লোবুলার ক্লাস্টারে দেখতে পাই, যার মধ্যে অনেকগুলি 12 বা এমনকি 13 বিলিয়ন বছরের বেশি বয়সের তারা দিয়ে তৈরি। মিল্কিওয়েতে এই বিচ্ছিন্ন নক্ষত্রের বয়সও 13 বিলিয়ন বছরেরও বেশি। আমাদের বর্তমান মহাবিশ্বে পপুলেশন II অনেক সংখ্যায় রয়েছে।
যদিও এর মানে কি সব জনসংখ্যা II তারা দ্বিতীয় প্রজন্মের তারা? এটি আপনার স্বাভাবিক অনুমান হতে পারে, কিন্তু আধুনিক জ্যোতির্বিজ্ঞানীরা বিশ্বাস করেন যে এটি এমন নয়। পপুলেশন II নক্ষত্র বিভিন্ন উপায়ে নক্ষত্র গঠন করতে পারে।
যদি আপনার দ্বিতীয় প্রজন্মের নক্ষত্রগুলি বিশাল ভরসম্পন্ন হয় তবে এটি আন্তঃনাক্ষত্রিক মাধ্যমটিকে প্রচুর পরিমাণে সমৃদ্ধ করতে পারে। একবার আপনি একটি নির্দিষ্ট সমৃদ্ধতার সীমা অতিক্রম করলে, আপনার সমস্ত নতুন তারা শেষ পর্যন্ত পপুলেশন I তারা হবে। তা হবে ধাতু সমৃদ্ধ নক্ষত্র, অনেকটা আমাদের সূর্যের মতো। কিন্তু আপনি সেই সীমাটি অতিক্রম করবেন কিনা তা অনেকগুলি কারণের উপর নির্ভর করে। যেমন:
আপনার গ্যালাক্সিতে (বা ছায়াপথের অঞ্চলে) তারকা-গঠনের হার।
আপনার গ্যালাক্সির একত্রীকরণ বা পূর্বে মিশে যাওয়ার (merger) ইতিহাস (প্রাচীন বা "দূষিত" উপাদানের আগমন সামগ্রিক গ্যালাক্সির সমৃদ্ধকরণকে পরিবর্তন করতে পারে)।
একটি নির্দিষ্ট নক্ষত্র-গঠনকারী অঞ্চল কত বড় (বড় অঞ্চলগুলি আরও বৃহদায়তন তারা তৈরি করে এবং বৃহত্তর সমৃদ্ধি গঠিত হয়)।
আন্তঃনাক্ষত্রিক মাধ্যমের উপাদানের ইতিহাসে কত প্রজন্মের তারা গঠিত হয়েছে।
নক্ষত্রের প্রজন্ম বলতে কী বোঝায় তা বলতে গেলে যা বলা হয় সেটি হলো –
প্রথম প্রজন্ম - আদিম বিগ ব্যাং উপাদান থেকে তৈরি।
দ্বিতীয় প্রজন্ম - একটি নক্ষত্র যা শুধুমাত্র মৃতপ্রায় প্রথম প্রজন্মের নক্ষত্র থেকে তৈরি, ভারী উপাদানে সমৃদ্ধ কিন্তু প্রাথমিক এস-প্রক্রিয়া (s-process) উপাদানের অভাব রয়েছে।
তৃতীয় প্রজন্ম - একটি নক্ষত্র যা ইতিমধ্যেই ভারী উপাদানে সমৃদ্ধ এবং পূর্ববর্তী দ্বিতীয় (বা তৃতীয়) প্রজন্মের নক্ষত্রের ভিতরে s-প্রক্রিয়ায় উৎপন্ন উপাদানগুলি সহ সমৃদ্ধ।
বিশাল গ্যালাক্সিগুলির কেন্দ্রের কাছাকাছি, সম্ভবত পপুলেশন I নক্ষত্র রয়েছে যেগুলি সত্যিই বিগ ব্যাং থেকে তৈরি হওয়া মাত্র তৃতীয় প্রজন্মের নক্ষত্রের সদস্য। যাইহোক, যখন আমরা আমাদের সূর্যের বৈশিষ্ট্যগুলি পরীক্ষা করি, যেমন এর বয়স (বিগ ব্যাংয়ের 9.2 বিলিয়ন বছর পরে), এর অবস্থান (গ্যালাকটিক কেন্দ্র থেকে 25,000 থেকে 27,000 আলোকবর্ষ), এবং এর ধাতবতা (প্রায় 1% থেকে 2% এর মৌলিক উপাদান হিলিয়ামের চেয়ে ভারী), আমরা দেখতে পাই যে আমাদের সূর্য বিভিন্ন ধরণের উপাদান দ্বারা গঠিত হওয়ার সম্ভাবনা অনেক বেশি।
আমাদের মিল্কিওয়ের মতো একটি বৃহৎ গ্যালাক্সিতে, যে পরমাণু এবং অণুগুলি নক্ষত্র গঠন করে তা সম্ভবত আমাদের মহাজাগতিক ইতিহাসে নক্ষত্রের বিভিন্ন প্রজন্মের একটি অংশ। তাদের মধ্যে কেউ কেউ শুধুমাত্র নক্ষত্রের প্রথম বা দ্বিতীয় প্রজন্মের অংশ হতে পারে, অন্যরা ষষ্ঠ প্রজন্মের বা তার বেশিও হতে পারে!
ঠিক কতোগুলো পূর্ব প্রজন্মের পরে সূর্যের উৎপত্তি হয়েছে তার বিস্তারিত কোন সহজ উত্তর নেই। সৌর হাইড্রোজেন এবং হিলিয়ামের বেশ কিছুটা আদিম হতে পারে। তাদের কেউ কেউ একাধিক তারার প্রজন্মের মধ্য দিয়ে গেছে। ভারী উপাদান (কিছু লিথিয়াম ছাড়া) অন্তত একটি তারার মাধ্যমে হয়েছে। সূর্যের মধ্যে বেরিয়ামের (Ba) মতো s-প্রক্রিয়া জাত উপাদান আছে, যেগুলো নিউট্রন ক্যাপচারের মাধ্যমে তৈরি হয়। এই ঘটনা থেকে বলা যায় সেগুলি পূর্বে অন্তত দুটি নক্ষত্রের মধ্য দিয়ে গেছে।
বর্তমানে আমাদের সূর্যের বিভিন্ন উপাদান এবং বিষয়বস্তুর প্রকৃত মহাজাগতিক ইতিহাস উন্মোচন করার কোনো উপায় নেই। আমরা যা করতে পারি তা হল মহাবিশ্বের নক্ষত্র-গঠনের ইতিহাস, সময়, গ্যালাক্সির আকার, ভর এবং বিবর্তন, ধাতবতা এবং আরও অনেক কিছুর ফল হিসাবে বিশদ বিবরণে একটি ছবি তৈরী করা। গ্যালাক্সিগুলির মহাজাগতিক ইতিহাস পুনর্গঠন করে কীভাবে আমাদের নিজস্ব গ্যালাক্সি বড় হয়েছে তা আমরা আরও ভালভাবে বুঝতে পারি। এই ধারণা আমাদের সূর্য সত্যিই কোথা থেকে এসেছে তা আরও ভালভাবে জানতে সাহায্য করে।
বিজ্ঞানীদের মতে আমাদের সূর্য অন্তত একটি তৃতীয় প্রজন্মের নক্ষত্র। কিন্তু সম্ভবত এটি বিভিন্ন ধরনের উপাদান দিয়ে তৈরি যা অসম বৈশিষ্ট্যের একাধিক প্রজন্মের তারার মধ্যে বিদ্যমান। যখন আমরা আমাদের মহাবিশ্বের অতীতকে আরও ভালভাবে বুঝতে পারবো আমাদের সূর্যের জন্ম ঠিক কীভাবে হয়েছিল সে সম্পর্কে আমাদের ধারণা আরও স্পষ্ট হয়ে উঠবে।
© সরোজ নাগ