কীভাবে Planck constant এর মান বের করা যায়? - ScienceBee প্রশ্নোত্তর

বিজ্ঞান ও প্রযুক্তির প্রশ্নোত্তর দুনিয়ায় আপনাকে স্বাগতম! প্রশ্ন-উত্তর দিয়ে জিতে নিন পুরস্কার, বিস্তারিত এখানে দেখুন।

+1 টি ভোট
487 বার দেখা হয়েছে
"পদার্থবিজ্ঞান" বিভাগে করেছেন (43,930 পয়েন্ট)

2 উত্তর

0 টি ভোট
করেছেন (43,930 পয়েন্ট)
 
সর্বোত্তম উত্তর

Since 2019, the numerical value of the Planck constant has been fixed, with a finite decimal representation. Under the present definition of the kilogram, which states that "The kilogram [...] is defined by taking the fixed numerical value of h to be 6.62607015×10−34 when expressed in the unit J⋅s, which is equal to kg⋅m2⋅s−1, where the metre and the second are defined in terms of speed of light c and duration of hyperfine transition of the ground state of an unperturbed caesium-133 atom ΔνCs."[44] This implies that mass metrology is now aimed to find the value of one kilogram, and thus it is kilogram which is compensating. Every experiment aiming to measure the kilogram (such as the Kibble balance and the X-ray crystal density method), will essentially refine the value of a kilogram.

As an illustration of this, suppose the decision of making h to be exact was taken in 2010, when its measured value was 6.62606957×10−34 J⋅s, thus the present definition of kilogram was also enforced. In the future, the value of one kilogram must be refined to 6.62607015/6.62606957 ≈ 1.0000001 times the mass of the International Prototype of the Kilogram (IPK).

 

Significance of the value

The Planck constant is related to the quantization of light and matter. It can be seen as a subatomic-scale constant. In a unit system adapted to subatomic scales, the electronvolt is the appropriate unit of energy and the petahertz the appropriate unit of frequency. Atomic unit systems are based (in part) on the Planck constant. The physical meaning of the Planck constant could suggest some basic features of our physical world. These basic features include the properties of the vacuum constants {\displaystyle \mu _{0}}\mu _{0} and {\displaystyle \epsilon _{0}}\epsilon _{0}. The Planck constant can be identified as

{\displaystyle h=13.1Q{\sqrt {\frac {\mu _{0}}{\epsilon _{0}}}}\zeta ^{2}}{\displaystyle h=13.1Q{\sqrt {\frac {\mu _{0}}{\epsilon _{0}}}}\zeta ^{2}},

where Q is the quality factor and {\displaystyle \zeta }\zeta is the integrated area of the vector potential at the center of the wave packet representing a particle.[45]

The Planck constant is one of the smallest constants used in physics. This reflects the fact that on a scale adapted to humans, where energies are typical of the order of kilojoules and times are typical of the order of seconds or minutes, the Planck constant is very small. One can regard the Planck constant to be only relevant to the microscopic scale instead of the macroscopic scale in our everyday experience.

Equivalently, the order of the Planck constant reflects the fact that everyday objects and systems are made of a large number of microscopic particles. For example, green light with a wavelength of 555 nanometres (a wavelength that can be perceived by the human eye to be green) has a frequency of 540 THz (540×1012 Hz). Each photon has an energy E = hf = 3.58×10−19 J. That is a very small amount of energy in terms of everyday experience, but everyday experience is not concerned with individual photons any more than with individual atoms or molecules. An amount of light more typical in everyday experience (though much larger than the smallest amount perceivable by the human eye) is the energy of one mole of photons; its energy can be computed by multiplying the photon energy by the Avogadro constantNA = 6.02214076×1023 mol−1[46], with the result of 216 kJ, about the food energy in three apples.

 

Determination

In principle, the Planck constant can be determined by examining the spectrum of a black-body radiator or the kinetic energy of photoelectrons, and this is how its value was first calculated in the early twentieth century. In practice, these are no longer the most accurate methods.

Since the value of the Planck constant is fixed now, it is no longer determined or calculated in laboratories. Some of the practices given below to determine the Planck constant are now used to determine the mass of the kilogram. The below-given methods except the X-ray crystal density method rely on the theoretical basis of the Josephson effect and the quantum Hall effect.

Josephson constant

Main article: Magnetic flux quantum

The Josephson constant KJ relates the potential difference U generated by the Josephson effect at a "Josephson junction" with the frequency ν of the microwave radiation. The theoretical treatment of Josephson effect suggests very strongly that KJ = 2e/h.

{\displaystyle K_{\rm {J}}={\frac {\nu }{U}}={\frac {2e}{h}}\,}K_{\rm {J}}={\frac {\nu }{U}}={\frac {2e}{h}}\,

The Josephson constant may be measured by comparing the potential difference generated by an array of Josephson junctions with a potential difference which is known in SI volts. The measurement of the potential difference in SI units is done by allowing an electrostatic force to cancel out a measurable gravitational force, in a Kibble balance. Assuming the validity of the theoretical treatment of the Josephson effect, KJ is related to the Planck constant by

{\displaystyle h={\frac {8\alpha }{\mu _{0}c_{0}K_{\rm {J}}^{2}}}.}h={\frac {8\alpha }{\mu _{0}c_{0}K_{\rm {J}}^{2}}}.

Kibble balance

Main article: Kibble balance

A Kibble balance (formerly known as a watt balance)[47] is an instrument for comparing two powers, one of which is measured in SI watts and the other of which is measured in conventional electrical units. From the definition of the conventional watt W90, this gives a measure of the product KJ2RK in SI units, where RK is the von Klitzing constant which appears in the quantum Hall effect. If the theoretical treatments of the Josephson effect and the quantum Hall effect are valid, and in particular assuming that RK = h/e2, the measurement of KJ2RK is a direct determination of the Planck constant.

{\displaystyle h={\frac {4}{K_{\rm {J}}^{2}R_{\rm {K}}}}.}h={\frac {4}{K_{\rm {J}}^{2}R_{\rm {K}}}}.

Magnetic resonance

Main article: Gyromagnetic ratio

The gyromagnetic ratio γ is the constant of proportionality between the frequency ν of nuclear magnetic resonance (or electron paramagnetic resonance for electrons) and the applied magnetic field Bν = γB. It is difficult to measure gyromagnetic ratios precisely because of the difficulties in precisely measuring B, but the value for protons in water at 25 °C is known to better than one part per million. The protons are said to be "shielded" from the applied magnetic field by the electrons in the water molecule, the same effect that gives rise to chemical shift in NMR spectroscopy, and this is indicated by a prime on the symbol for the gyromagnetic ratio, γ′p. The gyromagnetic ratio is related to the shielded proton magnetic moment μ′p, the spin number I (I = 1⁄2 for protons) and the reduced Planck constant.

{\displaystyle \gamma _{\rm {p}}^{\prime }={\frac {\mu _{\rm {p}}^{\prime }}{I\hbar }}={\frac {2\mu _{\rm {p}}^{\prime }}{\hbar }}}\gamma _{\rm {p}}^{\prime }={\frac {\mu _{\rm {p}}^{\prime }}{I\hbar }}={\frac {2\mu _{\rm {p}}^{\prime }}{\hbar }}

The ratio of the shielded proton magnetic moment μ′p to the electron magnetic moment μe can be measured separately and to high precision, as the imprecisely known value of the applied magnetic field cancels itself out in taking the ratio. The value of μe in Bohr magnetons is also known: it is half the electron g-factor ge. Hence

 

{\displaystyle \mu _{\rm {p}}^{\prime }={\frac {\mu _{\rm {p}}^{\prime }}{\mu _{\rm {e}}}}{\frac {g_{\rm {e}}\mu _{\rm {B}}}{2}}}\mu _{\rm {p}}^{\prime }={\frac {\mu _{\rm {p}}^{\prime }}{\mu _{\rm {e}}}}{\frac {g_{\rm {e}}\mu _{\rm {B}}}{2}}

{\displaystyle \gamma _{\rm {p}}^{\prime }={\frac {\mu _{\rm {p}}^{\prime }}{\mu _{\rm {e}}}}{\frac {g_{\rm {e}}\mu _{\rm {B}}}{\hbar }}.}\gamma _{\rm {p}}^{\prime }={\frac {\mu _{\rm {p}}^{\prime }}{\mu _{\rm {e}}}}{\frac {g_{\rm {e}}\mu _{\rm {B}}}{\hbar }}.

A further complication is that the measurement of γ′p involves the measurement of an electric current: this is invariably measured in conventional amperes rather than in SI amperes, so a conversion factor is required. The symbol Γ′p-90 is used for the measured gyromagnetic ratio using conventional electrical units. In addition, there are two methods of measuring the value, a "low-field" method and a "high-field" method, and the conversion factors are different in the two cases. Only the high-field value Γ′p-90(hi) is of interest in determining the Plaaccelerator.

{\displaystyle \gamma _{\text{p}}^{\prime }={\frac {K_{\text{J-90}}R_{\text{K-90}}}{K_{\text{J}}R_{\text{K}}}}\Gamma _{\rm {p-90}}^{\prime }({\rm {hi}})={\frac {K_{\text{J-90}}R_{\text{K-90}}e}{2}}\Gamma _{\rm {p-90}}^{\prime }({\rm {hi}})}

Substitution gives the expression for the Planck constant in terms of Γ′p-90(hi):

{\displaystyle h={\frac {c_{0}\alpha ^{2}g_{\text{e}}}{2K_{\text{J-90}}R_{\text{K-90}}R_{\infty }\Gamma _{\text{p-90}}^{\prime }({\rm {hi}})}}{\frac {\mu _{\text{p}}^{\prime }}{\mu _{\text{e}}}}.}{\displaystyle h={\frac {c_{0}\alpha ^{2}g_{\text{e}}}{2K_{\text{J-90}}R_{\text{K-90}}R_{\infty }\Gamma _{\text{p-90}}^{\prime }({\rm {hi}})}}{\frac {\mu _{\text{p}}^{\prime }}{\mu _{\text{e}}}}.}

Faraday constan

Main article: Faraday constant

The Faraday constant F is the charge of one mole of electrons, equal to the Avogadro constant NA multiplied by the elementary charge e. It can be determined by careful electrolysis experiments, measuring the amount of silver dissolved from an electrode in a given time and for a given electric current. Substituting the definitions of NA and e gives the relation to the Planck constant.

{\displaystyle h={\frac {c_{0}M_{\rm {u}}A_{\rm {r}}({\rm {e}})\alpha ^{2}}{R_{\infty }}}{\frac {1}{K_{\text{J}}R_{\text{K}}F}}}{\displaystyle h={\frac {c_{0}M_{\rm {u}}A_{\rm {r}}({\rm {e}})\alpha ^{2}}{R_{\infty }}}{\frac {1}{K_{\text{J}}R_{\text{K}}F}}}

X-ray crystal density

The X-ray crystal density method is primarily a method for determining the Avogadro constant NA but as the Avogadro constant is related to the Planck constant it also determines a value for h. The principle behind the method is to determine NA as the ratio between the volume of the unit cell of a crystal, measured by X-ray crystallography, and the molar volume of the substance. Crystals of silicon are used, as they are available in high quality and purity by the technology developed for the semiconductor industry. The unit cell volume is calculated from the spacing between two crystal planes referred to as d220. The molar volume Vm(Si) requires a knowledge of the density of the crystal and the atomic weight of the silicon used. The Planck constant h=E/f

0 টি ভোট
করেছেন (33,350 পয়েন্ট)
Planck constant, (symbol h), fundamental physical constant characteristic of the mathematical formulations of quantum mechanics, which describes the behavior of particles and waves on the atomic scale, including the particle aspect of light. The German physicist Max Planck introduced the constant in 1900 in his accurate formulation of the distribution of the radiation emitted by a blackbody, or perfect absorber of radiant energy (see Planck radiation law). The significance of Plank constant in this context is that radiation, such as light, is emitted, transmitted, and absorbed in discrete energy packets, or quanta, determined by the frequency of the radiation and the value of Planck constant. The energy E of each quantum, or each photon, equals Planck constant h  times the radiation frequency symbolized by the Greek letter nu, & nu; or simply E = hν. A modified form of the Planck constant called h-bar (ℏ), or the reduced Planck constant, in which ℏ equals h divided by 2π is the quantization of angular momentum. For example, the angular momentum of an electron bound to an atomic nucleus is quantized and can only be a multiple of h-bar.

Key People: Max Planck Robert Millikan
Related Topics: electromagnetic radiation Planck density Planck length Planck mass

Planck length: why string theory is hard to test
The Planck scale is described as the arena in which both quantum mechanical and gravitational effects come into play. Brian Greene explains where the Planck values come from.
The dimension of Planck constant is the product of energy multiplied by time, a quantity called action. Planck constant is often defined, therefore, as the elementary quantum of action. Its value in meter-kilogram-second units is defined as exactly 6.62607015 × 10−34 joule second.

সম্পর্কিত প্রশ্নগুচ্ছ

0 টি ভোট
1 উত্তর 252 বার দেখা হয়েছে
07 মার্চ 2022 "পদার্থবিজ্ঞান" বিভাগে জিজ্ঞাসা করেছেন R Atiqur (43,930 পয়েন্ট)
+4 টি ভোট
1 উত্তর 216 বার দেখা হয়েছে
+8 টি ভোট
1 উত্তর 236 বার দেখা হয়েছে
+8 টি ভোট
1 উত্তর 1,070 বার দেখা হয়েছে
03 নভেম্বর 2020 "পদার্থবিজ্ঞান" বিভাগে জিজ্ঞাসা করেছেন Nirjon Barua (7,990 পয়েন্ট)

10,775 টি প্রশ্ন

18,456 টি উত্তর

4,742 টি মন্তব্য

265,712 জন সদস্য

140 জন অনলাইনে রয়েছে
1 জন সদস্য এবং 139 জন গেস্ট অনলাইনে
  1. Farhan Anjum

    140 পয়েন্ট

  2. Saif Sakib

    110 পয়েন্ট

  3. Tasfima Jannat

    110 পয়েন্ট

  4. MckenzieZara

    100 পয়েন্ট

  5. typhu88rip

    100 পয়েন্ট

বাংলাদেশের সবচেয়ে বড় উন্মুক্ত বিজ্ঞান প্রশ্নোত্তর সাইট সায়েন্স বী QnA তে আপনাকে স্বাগতম। এখানে যে কেউ প্রশ্ন, উত্তর দিতে পারে। উত্তর গ্রহণের ক্ষেত্রে অবশ্যই একাধিক সোর্স যাচাই করে নিবেন। অনেকগুলো, প্রায় ২০০+ এর উপর অনুত্তরিত প্রশ্ন থাকায় নতুন প্রশ্ন না করার এবং অনুত্তরিত প্রশ্ন গুলোর উত্তর দেওয়ার আহ্বান জানাচ্ছি। প্রতিটি উত্তরের জন্য ৪০ পয়েন্ট, যে সবচেয়ে বেশি উত্তর দিবে সে ২০০ পয়েন্ট বোনাস পাবে।


Science-bee-qna

সর্বাপেক্ষা জনপ্রিয় ট্যাগসমূহ

মানুষ পানি ঘুম পদার্থ - জীববিজ্ঞান চোখ এইচএসসি-উদ্ভিদবিজ্ঞান এইচএসসি-প্রাণীবিজ্ঞান পৃথিবী রোগ রাসায়নিক শরীর #ask রক্ত আলো মোবাইল ক্ষতি চুল কী #science চিকিৎসা পদার্থবিজ্ঞান সূর্য প্রযুক্তি স্বাস্থ্য মাথা প্রাণী গণিত বৈজ্ঞানিক মহাকাশ পার্থক্য #biology এইচএসসি-আইসিটি বিজ্ঞান খাওয়া গরম শীতকাল #জানতে কেন ডিম চাঁদ বৃষ্টি কারণ কাজ বিদ্যুৎ রাত রং উপকারিতা শক্তি লাল আগুন সাপ মনোবিজ্ঞান গাছ খাবার সাদা আবিষ্কার দুধ উপায় হাত মশা শব্দ মাছ ঠাণ্ডা মস্তিষ্ক ব্যাথা ভয় বাতাস স্বপ্ন তাপমাত্রা গ্রহ রসায়ন উদ্ভিদ কালো পা কি বিস্তারিত রঙ মন পাখি গ্যাস সমস্যা মেয়ে বৈশিষ্ট্য হলুদ বাচ্চা সময় ব্যথা মৃত্যু চার্জ অক্সিজেন ভাইরাস আকাশ গতি দাঁত কান্না আম হরমোন বাংলাদেশ
...